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Court and Sephton (2009, 2011)

« Water and carbondioxide can be produced from hydrated mineral phases in
Carbonaceous Meteorites by heating.

« The presence of such minerals on Asteroid bodies make them attractive as targets
for volatile ISRU.
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Objective 6

» To develop greater understanding of the response of bulk volatile
rich asteroidal minerals o radiative heatfing to enable effective
asteroid ISRU as a means of supporting human activities in space.



Laboratory System Schematic
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Cryotrap and Mass Spectrometer ?
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Sample sefts 10

»Serpentine

> Major phase is Lizardite [Mg;Si,0:(OH) ]
> A hydrated Magnesium phyllosilicate.

» Major hydrated phase on carbonaceous
Asteroids.

» Detectable impurities includes
carbonates.

» Olivine

» Major phase is Forsterite [Mg,SiO ]
» Anhydrous Magnesium silicate

> Non-hydrated phase on carbonaceous
Asteroids

» Detectable impurities include
phyllosilicates



Center for Lunar and Atmospheric
Surface Science (CLASS) Simulant

Mineral Weight (%)

Serpentine
Olivine (Fo 20)
Magnetite

Vermiculite
Pyrite
Epsomite

Smectite

Sub-butiminous Coal

» “CLASS Simulant” nominal Composition (Brift, 2016; personal communication)

» Designed to simulate the Orgueil-type Carbonaceous Chondrite Meteorite
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« Sample Size: 700 — 1000 grams

 Diameter: 3 -4 Inch

* Height: 3 -4 inch
:Thermocouple location

»
v

Sample sitting in furnace with TCs going in
through the top.



Experimental Procedure 14

Sample Preparation (custom mesh, Handling, weighing)

Sys)’rem Preparation and characterization (Pumpdown and bake-out, leak-
up

Test run starts; sample is placed in chamber, system is pumped down to
base pressure of ~5E-5 torr, 5 temperature plateaus to be held (300 °C, 400
0C, 500, 600 °C and 650 °C), LN flowing through cryotrap, Mass
spectrometer is sampling atmosphere, data is acquired on DAQ.

Each plateau is held for at least 3 thermal fime constants and until there is @
significant drop in volatile production calculated from the mass spectra of
the chamber atmosphere

Trapped Ice is weighed and sampled at end of each temperature plateau.

Post-test weight measured; value compared to pre-test weight and to
weight of Ice collecied.



Preliminary Results 15

'Samples Sample Initial Mass Loss Total Mass  Effective Major
Tested ID Sample after of Ice Recovery Voldtile
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Characteristic heat profile in samples s
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Preliminary Findings 17

The cryotrap operates at Liquid nitrogen tfemperature and has proved capable
of recovering H,0O, CO,, and CH, at varying efficiencies.

Overall heat input and heat transter through the material would determine the
pace to complete de-hydroxylation of bulk granular serpentine minerals

Significant volatile production from serpentine minerals begins at the 500° C
plateau and increases in rate at higher temperatures.

The vield of desired products such as water may be affected by chemistry in the

gas phase if total pressure in the system is allowed o build up from produced
volatiles; a way to mitigate this is by continuously frapping.

The likely chemical pathway to water formation from the hydroxyl group minerals
under these conditions can be represented by the form;

H+ OH ————— H,0 Alternate pathway
leading to the
H+H ————— H, formation of Hydrogen

gas.
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Moving Forward 20

Complete experiments on Serpentine, Olivine and CLASS simulant.
Complete before and after indentation tests on samples.
Analyze sampled Ice

Outline practical limitations to the extraction of volatiles from carbonaceous
bodies.

Complete and compare Equilibrium model of reaction process with actual results
obtained.

Apply validated model to simulate full scale application in space to predict
yields and performance of various ISRU methods.









High Hydrogen Atmosphere as a »3

marker for Serpentine

De-hydroxylation

« Serpentine: 300 °C Plateau
« Spectra: ~ 60% Hydrogen

« Serpentine: 600 °C Plateau
« Spectra: ~ 90% Hydrogen
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The thermocouple plateau duration is greater than or equal to 3x the longest thermal time
constant of the 4 sample thermocouples, derived independently from all sample
thermocouple readings (starting after initial transients have died out.



Ending d Plateau o

» Gas production rate (proxied by the water partial pressure of the chamber
atmosphere) is significantly lower than the peak (i.e., down 2 orders of
magnitude from the peak).
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Forsterite XRD & TGA 27
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Olivine; major phase is Forsterite Mg, SiO,



Lizardite XRD & TGA 8
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« Serpentine; major phase is Lizardite [Mg»Si,0s (OH),]



Leak-up Test, Characteristic vacuumg
system background spectra
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